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Figure 1: MonST3R processes a dynamic video to produce a time-varying dynamic point cloud,
along with per-frame camera poses and intrinsics, in a predominantly feed-forward manner. This
representation then enables the efficient computation of downstream tasks, such as video depth
estimation and dynamic/static scene segmentation.

ABSTRACT

Estimating geometry from dynamic scenes, where objects move and deform over
time, remains a core challenge in computer vision. Current approaches often rely
on multi-stage pipelines or global optimizations that decompose the problem into
subtasks, like depth and flow, leading to complex systems prone to errors. In this
paper, we present Motion DUSt3R (MonST3R), a novel geometry-first approach
that directly estimates per-timestep geometry from dynamic scenes. Our key in-
sight is that by simply estimating a pointmap for each timestep, we can effectively
adapt DUSt3R’s representation, previously only used for static scenes, to dynamic
scenes. However, this approach presents a significant challenge: the scarcity of
suitable training data, namely dynamic, posed videos with depth labels. Despite
this, we show that by posing the problem as a fine-tuning task, identifying sev-
eral suitable datasets, and strategically training the model on this limited data, we
can surprisingly enable the model to handle dynamics, even without an explicit
motion representation. Based on this, we introduce new optimizations for several
downstream video-specific tasks and demonstrate strong performance on video
depth and camera pose estimation, outperforming prior work in terms of robust-
ness and efficiency. Moreover, MonST3R shows promising results for primarily
feed-forward 4D reconstruction. Interactive 4D results, source code, and trained
models will be available at: https://monst3r-project.github.io/.

1 INTRODUCTION

Despite recent progress in 3D computer vision, estimating geometry from videos of dynamic scenes
remains a fundamental challenge. Traditional methods decompose the problem into subproblems
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such as depth, optical flow, or trajectory estimation, addressed with specialized techniques, and then
combine them through global optimization or multi-stage algorithms for dynamic scene reconstruc-
tion (Luiten et al., 2020; Kumar et al., 2017; Bârsan et al., 2018; Mustafa et al., 2016). Even recent
work often takes optimization-based approaches given intermediate estimates derived from monocu-
lar video (Lei et al., 2024; Chu et al., 2024; Wang et al., 2024b; Liu et al., 2024; Wang et al., 2024a).
However, these multi-stage methods are usually slow, brittle, and prone to error at each step.

While highly desirable, end-to-end geometry learning from a dynamic video poses a significant
challenge, requiring a suitable representation that can represent the complexities of camera motion,
multiple object motion, and geometric deformations, along with annotated training datasets. While
prior methods have centered on the combination of motion and geometry, motion is often difficult
to directly supervise due to lack of annotated training data. Instead, we explore using only geometry
to represent dynamic scenes, inspired by the recent work DUSt3R (Wang et al., 2024c).

For static scenes, DUSt3R introduces a new paradigm that directly regresses scene geometry. Given
a pair of images, DUSt3R produces a pointmap representation - which associates every pixel in
each image with an estimated 3D location (i.e., xyz) and aligns these pair of pointmaps in the
camera coordinate system of the first frame. For multiple frames, DUSt3R accumulates the pairwise
estimates into a global point cloud and uses it to solve numerous standard 3D tasks such as single-
frame depth, multi-frame depth, or camera intrinsics and extrinsics.

We leverage DUSt3R’s pointmap representation to directly estimate geometry of dynamic scenes.
Our key insight is that pointmaps can be estimated per timestep and that representing them in the
same camera coordinate frame still makes conceptual sense for dynamic scenes. As shown in Fig. 1,
an estimated pointmap for the dynamic scene appears as a point cloud where dynamic objects appear
at multiple locations, according to how they move. Multi-frame alignment can be achieved by align-
ing pairs of pointmaps based on static scene elements. This setting is a generalization of DUSt3R to
dynamic scenes and allows us to use the same network and original weights as a starting point.

One natural question is if DUSt3R can already and effectively handle video data with moving ob-
jects. However, as shown in Fig. 2, we identify two significant limitations stemming from the
distribution of DUSt3R’s training data. First, since its training data contains only static scenes,
DUSt3R fails to correctly align pointmaps of scenes with moving objects; it often relies on moving
foreground objects for alignment, resulting in incorrect alignment for static background elements.
Second, since its training data consists mostly of buildings and backgrounds, DUSt3R sometimes
fails to correctly estimate the geometry of foreground objects, regardless of their motion, and places
them in the background. In principle, both problems originate from a domain mismatch between
training and test time and can be solved by re-training the network.

However, this requirement for dynamic, posed data with depth presents a challenge, primarily due
to its scarcity. Existing methods, such as COLMAP (Schönberger & Frahm, 2016), often struggle
with complex camera trajectories or highly dynamic scenes, making it challenging to produce even
pseudo ground truth data for training. To address this limitation, we identify several small-scale
datasets that possess the necessary properties for our purposes.

Our main finding is that, surprisingly, we can successfully adapt DUSt3R to handle dynamic scenes
by identifying suitable training strategies designed to maximally leverage this limited data and fine-
tuning on them. We then introduce several new optimization methods for video-specific tasks using
these pointmaps and demonstrate strong performance on video depth and camera pose estimation,
as well as promising results for primarily feed-forward 4D reconstruction.

The contributions of this work are as follows:

• We introduce Motion DUSt3R (MonST3R), a geometry-first approach to dynamic scenes
that directly estimates geometry in the form of pointmaps, even for moving scene elements.
To this end, we identify several suitable datasets and show that, surprisingly, a small-scale
fine-tuning achieves promising results for direct geometry estimation of dynamic scenes.

• MonST3R obtains promising results on several downstream tasks (video depth and cam-
era pose estimation). In particular, MonST3R offers key advantages over prior work:
enhanced robustness, particularly in challenging scenarios; increased speed compared to
optimization-based methods; and competitive results with specialized techniques in video
depth estimation, camera pose estimation and dense reconstruction.
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Figure 2: Limitation of DUSt3R on dynamic scenes. Left: DUSt3R aligns the moving foreground
subject and misaligns the background points as it is only trained on static scenes. Right: DUSt3R
fails to estimate the depth of a foreground subject, placing it in the background.

2 RELATED WORK

Structure from motion and visual SLAM. Given a set of 2D images, structure from motion
(SfM) (Schönberger & Frahm, 2016; Teed & Deng, 2018; Tang & Tan, 2018) or visual SLAM (Teed
& Deng, 2021; Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017; Engel et al., 2014; Newcombe
et al., 2011) estimate 3D structure of a scene while also localizing the camera. However, these
methods struggle with dynamic scenes with moving objects, which violate the epipolar constraint.

To address this problem, recent approaches have explored joint estimation of depth, camera pose,
and residual motion, optionally with motion segmentation to exploit the epipolar constraints on
the stationary part. Self-supervised approaches (Gordon et al., 2019; Mahjourian et al., 2018; Go-
dard et al., 2019; Yang et al., 2018) learn these tasks through self-supervised proxy tasks. Casual-
SAM (Zhang et al., 2022) finetunes a depth network at test time with a joint estimation of camera
pose and movement mask. Robust-CVD (Kopf et al., 2021) jointly optimizes depth and camera
pose given optical flow and binary masks for dynamic objects. Our approach directly estimates
3D structure of a dynamic scene in the pointmap representation without time-consuming test-time
finetuning.

Representation for static 3D reconstruction. Learning-based approaches reconstruct static 3D
geometry of objects or scenes by learning strong 3D priors from training datasets. Commonly used
output representations include point clouds (Guo et al., 2020; Lin et al., 2018), meshes (Gkioxari
et al., 2019; Wang et al., 2018), voxel (Sitzmann et al., 2019; Choy et al., 2016; Tulsiani et al., 2017),
implicit representation (Wang et al., 2021a; Peng et al., 2020; Chen & Zhang, 2019), etc.

DUSt3R (Wang et al., 2024c) introduces a pointmap representation for scene-level 3D reconstruc-
tion. Given two input images, the model outputs a 3D point of each pixel from both images in the
camera coordinate system of the first frame. The model implicitly infers camera intrinsics, rela-
tive camera pose, and two-view geometry and thus can output an aligned points cloud with learned
strong 3D priors. However, the method targets only static scenes. MonST3R shares the pointmap
representation of DUSt3R but targets scenes with dynamic objects.

Learning-based visual odometry. Learning-based visual odometry replaces hand-designed parts of
geometry-based methods (Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017; Engel et al., 2017) and
enables large-scale training for better generalization even with moving objects. Trajectory-based
approaches (Chen et al., 2024; Zhao et al., 2022) estimate long-term trajectories along a video se-
quence, classify their dynamic and static motion, and then localize camera via bundle adjustment.
Joint estimation approaches additionally infer moving object mask (Shen et al., 2023) or optical
flow (Wang et al., 2021b) to be robust to moving objects while requiring their annotations during
training. In contrast, our method directly outputs dynamic scene geometry via a pointmap represen-
tation and localizes camera afterwards.
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Monocular and video depth estimation. Recent deep learning works (Ranftl et al., 2020; 2021;
Saxena et al., 2024; Ke et al., 2024) target zero-shot performance and with large-scale training com-
bined with synthetic datasets (Yang et al., 2024a;b) show strong generalization to diverse domains.
However, for video, these approaches suffer from flickering (temporal inconsistency between nearby
estimates) due to their process of only a single frame and invariant training objectives.

Early approaches to video depth estimation (Luo et al., 2020; Zhang et al., 2021) improve temporal
consistency by fine-tuning depth models, and sometimes motion models, at test time for each input
video. Two recent approaches attempt to improve video depth estimation using generative priors.
However, Chronodepth (Shao et al., 2024) still suffers from flickering due to its window-based infer-
ence, and DepthCrafter (Hu et al., 2024) produces scale-/shift-invariant depth, which is unsuitable
for many 3D applications (Yin et al., 2021).

4D reconstruction. Concurrently approaches (Lei et al., 2024; Chu et al., 2024; Wang et al., 2024b;
Liu et al., 2024) introduce 4D reconstruction methods of dynamic scenes. Given a monocular video
and pre-computed estimates (e.g., 2D motion trajectory, depth, camera intrinsics and pose, etc.),
the approaches reconstruct the input video in 4D space via test-time optimization of 3D Gaus-
sians (Kerbl et al., 2023) with deformation fields, facilitating novel view synthesis in both space and
time. Our method is orthogonal to the methods and estimate geometry from videos in a feed-forward
manner. Our estimates could be used as initialization or intermediate signals for these methods.

3 METHOD

3.1 BACKGROUND AND BASELINES

Model architecture. Our architecture is based on DUSt3R (Wang et al., 2024c), a ViT-based archi-
tecture (Dosovitskiy et al., 2021) that is pre-trained on a cross-view completion task (Weinzaepfel
et al., 2023) in a self-supervised manner. Two input images are first individually fed to a shared
encoder. A following transformer-based decoder processes the input features with cross-attention.
Then two separate heads at the end of the decoder output pointmaps of the first and second frames
aligned in the coordinate of the first frame.

Baseline with mask. While DUSt3R is designed for static scenes as shown in Fig. 2, we analzye
its applicability to dynamic scenes by using knowledge of dynamic elements (Chen et al., 2024;
Zhao et al., 2022). Using ground truth moving masks, we adapt DUSt3R by masking out dynamic
objects during inference at both the image and token levels, replacing dynamic regions with black
pixels in the image and corresponding tokens with mask tokens. This approach, however, leads to
degraded pose estimation performance (Sec. 4.3), likely because the black pixels and mask tokens
are out-of-distribution with respect to training. This motivates us to address these issues in this work.

3.2 TRAINING FOR DYNAMICS

Main idea. While DUSt3R primarily focuses on static scenes, the proposed MonST3R can estimate
the geometry of dynamic scenes over time. Figure. 1 shows a visual example consisting of a point
cloud where dynamic objects appear at different locations, according to how they move.

Similar to DUSt3R, for a single image It at time t, MonST3R also predicts a pointmap Xt ∈
RH×W×3. For a pair of images, It and It

′
, we adapt the notation used in the global optimization

section of DUSt3R. The network predicts two corresponding pointmaps, Xt;t t′ and Xt′;t t′ , with
confidence map, Ct;t t′ and Ct′;t t′ The first element t in the superscript indicates the frame that
the pointmap corresponds to, and t t′ indicates that the network receives two frames at t, t′ and that
the pointmaps are in the coordinate frame of the camera at t. The key difference from DUSt3R is
that each pointmap in MonST3R relates to a single point in time.

Training datasets. A key challenge in modeling dynamic scenes as per-timestep pointmaps lies
in the scarcity of suitable training data, which requires synchronized annotations of input images,
camera poses, and depth. Acquiring accurate camera poses for real-world dynamic scenes is partic-
ularly challenging, often relying on sensor measurements or post-processing through structure from
motion (SfM) (Schönberger et al., 2016; Schönberger & Frahm, 2016) while filtering out moving
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Table 1: Training datasets used fine-tuning on dynamic scenes. All datasets provide both camera
pose and depth, and most of them include dynamic objects.

Dataset Domain Scene type # of frames # of Scenes Dynamics Ratio

PointOdyssey (Zheng et al., 2023) Synthetic Indoors & Outdoors 200k 131 Realistic 50%
TartanAir (Wang et al., 2020) Synthetic Indoors & Outdoors 1000k 163 None 25%
Spring (Mehl et al., 2023) Synthetic Outdoors 6k 37 Realistic 5%
Waymo Perception (Sun et al., 2020) Real Driving 160k 798 Driving 20%

objects. Consequently, we leverage primarily synthetic datasets, where accurate camera poses and
depth can be readily extracted during the rendering process.

For our dynamic fine-tuning, we identify four large video datasets: three synthetic datasets -
PointOdyssey (Zheng et al., 2023), TartanAir (Wang et al., 2020), and Spring (Mehl et al., 2023),
along with the real-world Waymo dataset (Sun et al., 2020), as shown in Tab. 1. These datasets con-
tain diverse indoor/outdoor scenes, dynamic objects, camera motion, and labels for camera pose and
depth. PointOdyssey and Spring are both synthetically rendered scenes with articulated, dynamic
objects; TartanAir consists of synthetically rendered drone fly-throughs of different scenes without
dynamic objects; and Waymo is a real-world driving dataset labeled with LiDAR.

During training, we sample the datasets asymmetrically to place extra weight on PointOdyssey
(more dynamic, articulated objects) and less weight on TartanAir (good scene diversity but static)
and Waymo (a highly specialized domain). Images are downsampled such that their largest dimen-
sion is 512.

Training strategies. Due to the relatively small size of this dataset mixture, we adopt several train-
ing techniques designed to maximize data efficiency. First, we only finetune the prediction head and
decoder of the network while freezing the encoder. This strategy preserves the geometric knowledge
in the CroCo (Weinzaepfel et al., 2022) features and should decrease the amount of data required for
fine-tuning. Second, we create training pairs for each video by sampling two frames with temporal
strides ranging from 1 to 9. The sampling probabilities increase linearly with the stride length, with
the probability of selecting stride 9 being twice that of stride 1. This gives us a larger diversity of
camera and scene motion and more heavily weighs larger motion. Third, we utilize a Field-of-View
augmentation technique using center crops with various image scales. This encourages the model to
generalize across different camera intrinsics, even though such variations are relatively infrequent in
the training videos.

3.3 DOWNSTREAM APPLICATIONS

Instrinsics and relative pose estimation. Since the intrinsic parameters are estimated based on the
pointmap in its own camera frame Xt;t t′ , the assumptions and computation listed in DUSt3R are
still valid, and we only need to solve for focal length f t to obtain the camera intrinsics Kt.

To estimate relative pose P = [R|T], where R and T represent the camera’s rotation and transla-
tion, respectively, dynamic objects violate several assumptions required for the use of an epipolar
matrix (Hartley & Zisserman, 2003) or Procrustes alignment (Luo & Hancock, 1999). Instead, we
use RANSAC (Fischler & Bolles, 1981) and PnP (Hartley & Zisserman, 2003; Lepetit et al., 2009).
For most scenes, where most pixels are static, random samples of points will place more emphasis
on the static elements, and relative pose can be estimated robustly using the inliers.

Confident static regions. We can infer static regions in frames t, t′ by comparing the estimated
optical flow with the flow field that results from applying only camera motion from t to t′ to the
pointmap at t. The two flow fields should agree for pixels where the geometry has been correctly
estimated and are static. Given a pair of frames It and It

′
, we first compute two sets of pointmaps

Xt;t t′ ,Xt′;t t′ and Xt;t′ t,Xt′;t′ t. We then use these pointmaps to solve for the camera intrinsics
(Kt and Kt′ ) for each frame and the relative camera pose from t to t′, Pt→t′ = [Rt→t′ |Tt→t′ ] as
above. We then compute the optical flow field induced by camera motion, Ft→t′

cam , by backprojecting
each pixel in 3D, applying relative camera motion, and projecting back to image coordinate,

Ft→t′

cam = π(Dt;t t′Kt′Rt→t′Kt−1
x̂+Kt′Tt→t′)− x, (1)
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Figure 3: Dynamic global point cloud and camera pose estimation. Given a fixed sized of tem-
poral window, we compute pairwise pointmap for each frame pair with MonST3R and optical flow
from off-the-shelf method. These intermediates then serve as inputs to optimize a global point cloud
and per-frame camera poses. Video depth can be directly derived from this unified representation.

where x is a pixel coordinate matrix, x̂ is x in homogeneous coordinates, π(·) is the projection op-
eration (x, y, z) → (x/z, y/z), and Dt;t t′ is estimated depth extracted from the point map Xt;t t′ .
Then we compare it with optical flow (i.e., Ft→t′

est ) computed by an off-the-shelf optical flow method
(Wang et al., 2024d) and infer the static mask St→t′ via a simple thresholding:

St→t′ =
[
α > ||Ft→t′

cam − Ft→t′

est ||L1

]
, (2)

with a threshold α, || · ||L1 for smooth-L1 norm (Girshick, 2015), and [·] for the Iverson bracket. This
confident, static mask is both a potential output and will be used in the later global pose optimization.

3.4 DYNAMIC GLOBAL POINT CLOUDS AND CAMERA POSE

Even a short video contain numerous frames (e.g. a 5-second video with 24 fps gives 120 frames)
making it non-trivial to extract a single dynamic point cloud from pairwise pointmap estimates
across the video. Here, we detail the steps to simultaneously solve for a global dynamic point cloud
and camera poses by leveraging our pairwise model and the inherent temporal structure of video.

Video graph. For global alignment, DUSt3R constructs a connectivity graph from all pairwise
frames, a process that is prohibitively expensive for video. Instead, as shown on the left of Fig. 3,
we process video with a sliding temporal window, significantly reducing the amount of compute
required. Specifically, given a video V = [I0, . . . , IN ], we compute pointmaps for all pairs e =
(t, t′) within a temporal window of size w, Wt = {(a, b) | a, b ∈ [t, . . . , t+ w], a ̸= b} and for all
valid windows W. To further improve the run time, we also apply strided sampling.

Dynamic global point cloud and pose optimization. The primary goal is to accumulate all pairwise
pointmap predictions (e.g., Xt;t t′ ,Xt′;t t′ ) into the same global coordinate frame to produce world-
coordinate pointmap Xt ∈ RH×W×3. To do this, as shown in Fig. 3, we use DUSt3R’s alignment
loss and add two video specific loss terms: camera trajectory smoothness and flow projection.

We start by re-parameterizing the global pointmaps Xt with camera parameters Pt = [Rt|Tt],Kt

and per-frame depthmap Dt, as Xt
i,j := Pt−1

h(Kt−1
[iDt

i,j ; jD
t
i,j ;D

t
i,j ]), with (i, j) for pixel

coordinate and h() for homogeneous mapping. It allows us to define losses directly on the camera
parameters. To simplify the notation for function parameters, we use Xt as a shortcut for Pt,Kt,Dt.

First, we use the alignment term in DUSt3R which aims to find a single rigid transformation Pt;e

that aligns each pairwise estimation with the world coordinate pointmaps, since both Xt;t t′ and
Xt′;t t′ are in the same camera coordinate frame:

Lalign(X, σ,PW ) =
∑

W i∈W

∑
e∈W i

∑
t∈e

||Ct;e · (Xt − σePt;eXt;e)||1, (3)

where σe is a pairwise scale factor. To simplify the notation, we use the directed edge e = (t, t′)
interchangeably with t t′.
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We use a camera trajectory smoothness loss to encourage smooth camera motion by penalizing large
changes in camera rotation and translation in nearby timesteps:

Lsmooth(X) =

N∑
t=0

(∥∥∥Rt⊤Rt+1 − I
∥∥∥

f
+

∥∥∥Rt⊤(Tt+1 −Tt)
∥∥∥
2

)
, (4)

where the Frobenius norm ∥ · ∥f is used for the rotation difference, the L2 norm ∥ · ∥2 is used for the
translation difference, and I is the identity matrix.

We also use a flow projection loss to encourage the global pointmaps and camera poses to be con-
sistent with the estimated flow for the confident, static regions of the actual frames. More precisely,
given two frames t, t′, using their global pointmaps, camera extrinsics and intrinsics, we compute
the flow fields from taking the global pointmap Xt, assuming the scene is static, and then moving
the camera from t to t′. We denote this value Fglobal;t→t′

cam , similar to the term defined in the confi-
dent static region computation above. Then we can encourage this to be close to the estimated flow,
Ft→t′

est , in the regions which are confidently static Sglobal;t→t′ according to the global parameters:

Lflow(X) =
∑

W i∈W

∑
t→t′∈W i

||Sglobal;t→t′ · (Fglobal;t→t′

cam − Ft→t′

est )||1, (5)

where · indicates element-wise multiplication. Note that the confident static mask is initialized using
the pairwise prediction values (pointmaps and relative poses) as described in Sec. 3.3. During the
optimization, we use the global pointmaps and camera parameters to compute Fglobal

cam and update the
confident static mask.

The complete optimization for our dynamic global point cloud and camera poses is:

X̂ = argmin
X,PW ,σ

Lalign(X, σ,PW ) + wsmoothLsmooth(X) + wflowLflow(X), (6)

where wsmooth, wflow are hyperparameters. Note, based on the reparameterization above, X̂ includes
all the information for D̂, P̂, K̂.

Video depth. We can now easily obtain temporally-consistent video depth, traditionally addressed
as a standalone problem. Since our global pointmaps are parameterized by camera pose and per-
frame depthmaps D̂, just returning D̂ gives the video depth.

4 EXPERIMENTS

MonST3R runs on a monocular video of a dynamic scene and jointly optimizes video depth and
camera pose. We compare the performance with methods specially designed for each individual
subtask (i.e., depth estimation and camera pose estimation), as well as monocular depth methods.

4.1 EXPERIMENTAL DETAILS

Training and Inference. We fine-tune the DUSt3R’s ViT-Base decoder and DPT heads for 25
epochs, using 20,000 sampled image pairs per epoch. We use the AdamW optimizer with a learning
rate of 5× 10−5 and a mini-batch size of 4 per GPU. Training took one day on 2× RTX 6000 48GB
GPUs. Inference for a 60-frame video with w = 9 and stride 2 (approx. 600 pairs) takes around 30s.

Global Optimization. For global optimization Eq. (6), we set the hyperparameter of each weights
to be wsmooth = 0.01 and wflow = 0.01. We only enable the flow loss when the average value is
below 20, when the poses are roughly aligned. The motion mask is updated during optimization
if the per-pixel flow loss is higher than 50. We use the Adam optimizer for 300 iterations with a
learning rate of 0.01, which takes around 1 minute for a 60-frame video on a single RTX 6000 GPU.

4.2 SINGLE-FRAME AND VIDEO DEPTH ESTIMATION

Baselines. We compare our method with video depth methods, NVDS (Wang et al., 2023), Chron-
oDepth (Shao et al., 2024), and concurrent work, DepthCrafter (Hu et al., 2024), as well as single-
frame depth methods, Depth-Anything-V2 (Yang et al., 2024b) and Marigold (Ke et al., 2024).
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Table 2: Video depth evaluation on Sintel, Bonn, and KITTI datasets. We evaluate for both scale-
and-shift-invariant and scale-invariant depth. The best and second best results in each category are
bold and underlined, respectively.

Sintel Bonn KITTI

Alignment Category Method Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑

Per-sequence
scale & shift

Single-frame
depth

Marigold 0.532 51.5 0.091 93.1 0.149 79.6
Depth-Anything-V2 0.367 55.4 0.106 92.1 0.140 80.4

Video depth
NVDS 0.408 48.3 0.167 76.6 0.253 58.8
ChronoDepth 0.687 48.6 0.100 91.1 0.167 75.9
DepthCrafter (Sep. 2024) 0.292 69.7 0.075 97.1 0.110 88.1

Joint video
depth & pose

Robust-CVD 0.703 47.8 - - - -
CasualSAM 0.387 54.7 0.169 73.7 0.246 62.2
MonST3R 0.335 58.5 0.063 96.4 0.104 89.5

Per-sequence
scale

Video depth DepthCrafter (Sep. 2024) 0.692 53.5 0.217 57.6 0.141 81.8
Joint depth & pose MonST3R 0.345 56.2 0.065 96.3 0.106 89.3

Table 3: Single-frame depth evaluation. We report the performance on Sintel, Bonn, KITTI, and
NYU-v2 (static) datasets. MonST3R achieves overall comparable results to DUSt3R.

Sintel Bonn KITTI NYU-v2 (static)

Method Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑ Abs Rel ↓ δ <1.25 ↑
DUSt3R 0.424 58.7 0.141 82.5 0.112 86.3 0.080 90.7
MonST3R 0.345 56.5 0.076 93.9 0.101 89.3 0.091 88.8

We also compare with methods for joint video depth and pose estimation, CasualSAM (Zhang et al.,
2022) and Robust-CVD (Kopf et al., 2021), which address the same problem as us. This comparison
is particularly important since joint estimation is substantially more challenging than only estimat-
ing depth. Of note, CasualSAM relies on heavy optimization, whereas ours runs in a feed-forward
manner with only lightweight optimization.

Benchmarks and metrics. Similar to DepthCrafter, we evaluate video depth on KITTI (Geiger
et al., 2013), Sintel (Butler et al., 2012), and Bonn (Palazzolo et al., 2019) benchmark datasets, cov-
ering dynamic and static, indoor and outdoor, and realistic and synthetic data. For monocular/single-
frame depth estimation, we also evaluate on NYU-v2 (Silberman et al., 2012).

Our evaluation metrics include absolute relative error (Abs Rel) and percentage of inlier points
δ < 1.25, following the convention (Hu et al., 2024; Yang et al., 2024b). All methods output scale-
and/or shift- invariant depth estimates. For video depth evaluation, we align a single scale and/or
shift factor per each sequence, whereas the single-frame evaluation adopts per-frame median scaling,
following Wang et al. (2024c). As demonstrated by Yin et al. (2021), shift is particularly important
in the 3D geometry of a scene and is important to predict.

Results. As shown in Tab. 2, MonST3R achieves competitive and even better results, even out-
performing specialized video depth estimation techniques like DepthCrafter (a concurrent work).
Furthermore, MonST3R significantly outperforms DepthCrafter (Hu et al., 2024) with scale-only
normalization. As in Tab. 3, even after our fine-tuning for videos of dynamic scenes, the perfor-
mance on single-frame depth estimation remains competitive with the original DUSt3R model.

4.3 CAMERA POSE ESTIMATION

Baselines. We compare with not only direct competitors (i.e., CasualSAM and Robust-CVD), but
also a range of learning-based visual odometry methods for dynamic scenes, such as DROID-
SLAM (Teed & Deng, 2021), Particle-SfM (Zhao et al., 2022), DPVO (Teed et al., 2024), and
LEAP-VO (Chen et al., 2024). Notably, several methods (e.g., DROID-SLAM, DPVO, and LEAP-
VO) require ground truth camera intrinsic as input and ParticleSfM is an optimization-based method
that runs 5× slower than ours. We also compare with the “DUSt3R with mask” baseline in Sec. 3.1
to see if DUSt3R performs well on dynamic scenes when a ground truth motion mask is provided.
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Table 4: Evaluation on camera pose estimation on the Sintel, TUM-dynamic, and ScanNet. The
best and second best results are bold and underlined, respectively. MonST3R achieves competitive
and even better results than pose-specific methods, even without ground truth camera intrinsics.

Sintel TUM-dynamics ScanNet (static)

Category Method ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓

Pose only

DROID-SLAM∗ 0.175 0.084 1.912 - - - - - -
DPVO∗ 0.115 0.072 1.975 - - - - - -
ParticleSfM 0.129 0.031 0.535 - - - 0.136 0.023 0.836
LEAP-VO∗ 0.089 0.066 1.250 0.068 0.008 1.686 0.070 0.018 0.535

Robust-CVD 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374
Joint depth CasualSAM 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618

& pose DUSt3R w/ mask† 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784
MonST3R 0.108 0.042 0.732 0.063 0.009 1.217 0.068 0.017 0.545

∗ requires ground truth camera intrinsics as input, † unable to estimate the depth of foreground object.

Benchmarks and metrics. We evaluate the methods on Sintel (Butler et al., 2012) and TUM-
dynamics (Sturm et al., 2012) (following CasualSAM) and ScanNet (Dai et al., 2017) (following
ParticleSfM) to test generalization to static scenes as well. On Sintel, we follow the same evaluation
protocol as in Chen et al. (2024); Zhao et al. (2022), which excludes static scenes or scenes with
perfectly-straight camera motion, resulting in total 14 sequences. For TUM-dynamics and ScanNet,
we sample the first 90 frames with the temporal stride of 3 to save compute. We report the same
metric as Chen et al. (2024); Zhao et al. (2022): Absolute Translation Error (ATE), Relative Trans-
lation Error (RPE trans), and Relative Rotation Error (RPE rot), after applying a Sim(3) Umeyama
alignment on prediction to the ground truth.

Results. In Tab. 4, MonST3R achieves the best accuracy among methods to joint depth and pose es-
timation and performs competitively to pose-only methods even without using ground truth camera
intrinsics. Our method also generalizes well to static scenes (i.e., ScanNet) and shows improvements
over even DUSt3R, which proves the effectiveness of our designs (e.g., Eq. (6)) for video input.

4.4 JOINT DENSE RECONSTRUCTION AND POSE ESTIMATION

Fig. 4 qualitatively compares our method with CasualSAM and DUSt3R on video sequences for
joint dense reconstruction and pose estimation on DAVIS (Perazzi et al., 2016). For each video
sequence, we visualize overlayed point clouds aligned with estimated camera pose, showing as two
rows with different view points for better visualization. As discussed in Fig. 2, DUSt3R struggles
with estimating correct geometry of moving foreground objects, resulting in failure of joint camera
pose estimation and dense reconstruction. CasualSAM reliably estimates camera trajectories while
sometimes failing to produce correct geometry estimates for foreground objects. MonST3R outputs
both reliable camera trajectories and reconstruction of entire scenes along the video sequences.

4.5 ABLATION STUDY

Table 5 presents an ablation study analyzing the impact of design choices in our method, including
the selection of training datasets, fine-tuning strategies, and the novel loss functions used for dy-
namic point cloud optimization. Our analysis reveals that: (1) all datasets contribute to improved
camera pose estimation performance; (2) fine-tuning only the decoder and head outperforms alter-
native strategies; and (3) the proposed loss functions enhance pose estimation with minimal impact
on video depth accuracy.

Discussions. While MonST3R represents a promising step towards directly estimating dynamic ge-
ometry from videos as well as camera pose and video depth, limitations remain. While our method
can, unlike prior methods, theoretically handle dynamic camera intrinsics, we find that, in practice,
this requires careful hyperparameter tuning or manual constraints. Like many deep learning meth-
ods, MonST3R struggles with out-of-distribution inputs, such as open fields. Expanding the training
set is a key direction to make MonST3R more robust to in-the-wild videos.
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MonST3R (Ours)CasualSAMInput Video DUSt3R

Figure 4: Qualitative comparison. Compared to CasualSAM and DUSt3R, our method outputs
both reliable camera trajectories and geometry of dynamic scenes. Refer to Fig. A5 for more results.

Table 5: Ablation study on Sintel dataset. For each category, the default setting is underlined, and
the best performance is bold.

Camera pose estimation Video depth estimation

Variants ATE ↓ RPE trans ↓ RPE rot ↓ Abs Rel ↓ δ <1.25 ↑

Training
dataset

No finetune (DUSt3R) 0.354 0.167 0.996 0.482 56.5
w/ PO 0.220 0.129 0.901 0.378 53.7
w/ PO+TA 0.158 0.054 0.886 0.362 56.7
w/ PO+TA+Spring 0.121 0.046 0.777 0.329 58.1
w/ TA+Spring+Waymo 0.167 0.107 1.136 0.462 54.0
w/ all 4 datasets 0.108 0.042 0.732 0.335 58.5

Training
strategy

Full model finetune 0.181 0.110 0.738 0.352 55.4
Finetune decoder & head 0.108 0.042 0.732 0.335 58.5
Finetune head 0.185 0.128 0.860 0.394 55.7

Inference

w/o flow loss 0.140 0.051 0.903 0.339 57.7
w/o static region mask 0.132 0.049 0.899 0.334 58.7
w/o smoothness loss 0.127 0.060 1.456 0.333 58.4
Full 0.108 0.042 0.732 0.335 58.5

5 CONCLUSIONS

We present MonST3R, a simple approach to directly estimate geometry for dynamic scenes and ex-
tract downstream information like camera pose and video depth. MonST3R leverages per-timestep
pointmaps as a powerful representation for dynamic scenes. Despite being finetuned on a relatively
small training dataset, MonST3R achieves impressive results on downstream tasks, surpassing even
state-of-the-art specialized techniques.
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A MORE QUALITATIVE RESULTS

A.1 DEPTH

For more thorough comparisons, we include additional qualitative examples of video depth, com-
paring our method against DepthCrafter, a concurrent method specifically trained for video depth.
We include comparisons on the Bonn dataset in Fig. A1 and the KITTI dataset in Fig. A2. In these
comparisons, we show that after alignment, our estimates are much closer to the ground truth than
those of DepthCrafter.

MonST3R (Ours)DepthCrafterGT DepthInput Frames

Figure A1: Video depth estimation comparison on Bonn dataset. Evaluation protocol is per-
sequence scale & shift. We visualize the prediction result after alignment. Note, in the first row, our
depth estimation is more aligned with the GT depth (e.g., the wall) compared to DepthCrafter’s.

A.2 CAMERA POSE

We present additional qualitative results for camera pose estimation. We compare our model with
the state-of-the-art visual odometry method LEAP-VO and the joint video depth and pose optimiza-
tion method CasualSAM. Results are provided for the Sintel dataset in Fig. A3 and Scannet dataset
in Fig. A4. In these comparisons, our method significantly outperforms the baselines for very chal-
lenging cases such as “temple 3” and “cave 2” in Sintel and performs comparable to or better than
baselines in the rest of the results like those in the Scannet dataset.

A.3 JOINT DEPTH & CAMERA POSE RESULTS

We present additional results for joint point cloud and camera pose estimation, comparing against
CasualSAM and DUSt3R. Fig. A5 shows three additional scenes for Davis: mbike-trick, train, and
dog. For mbike-trick, CasualSAM makes large errors in both geometry and camera pose; DUSt3R
produces reasonable geometry except for the last subset of the video which also results in poor
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MonST3R (Ours)
(Prediction / Error)

DepthCrafter
(Prediction / Error)Input Frames / GT Depth

Figure A2: Video depth estimation comparison on KITTI dataset. Evaluation protocol is per-
sequence scale & shift. For each case, the upper row is for input frame and depth prediction; the
lower row is for ground truth depth annotation and error map. Prediction result is after alignment.

pose estimation (highlighted in red); and ours correctly estimates both geometry and camera pose.
For train, CasualSAM accurately recovers the camera pose for the video but produces suboptimal
geometry, misaligning the train and the track at the top right. DUSt3R both misaligns the track at the
top left and gives poor camera pose estimates. Our method correctly estimates both geometry and
camera pose. For dog, CasualSAM produces imprecise, smeared geometry with slight inaccuracies
in the camera pose. DUSt3R results in mistakes in both the geometry and camera pose due to
misalignments of the frames, while our method correctly estimates both geometry and camera pose.

A.4 PAIRWISE POINTMAPS

In Fig. A6, we also include visualizations of two input frames and estimated pairwise pointmaps,
the direct output of the trained models, for both DUSt3R and MonST3R. Note, these results do not
include any optimization or post-processing. Row 1 demonstrates that even after fine-tuning, our
method retains the ability to handle changing camera intrinsics. Rows 2 and 3 demonstrate that our
method can handle “impossible” alignments that two frames have almost no overlap, even in the
presence of motion, unlike DUSt3R that misaligns based on the foreground object. Rows 4 and 5
show that in addition to enabling the model to handle motion, our fine-tuning also has improved the
model’s ability to represent large-scale scenes, where DUSt3R predicts to be flat.
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MonST3R (Ours)CasualSAMLEAP-VO

Input Video

Figure A3: Camera pose estimation comparison on the Sintel dataset. The trajectories are plotted
along the two axes with the highest variance to capture the most significant motion. The predicted
trajectory (solid blue line) is aligned to match the ground truth trajectory (dashed gray line). Our
MonST3R is more robust at challenging scenes, “temple 3” and “cave 2” (the last two rows).
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Figure A4: Camera pose estimation comparison on the Scannet dataset. The trajectories are
plotted along the two axes with the highest variance to capture the most significant motion.
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MonST3R (Ours)CasualSAMInput Video DUSt3R

Figure A5: Qualitative comparison on Davis. Compared to CasualSAM and DUSt3R, our method
outputs both reliable camera trajectories and geometry of dynamic scenes.
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MonST3R (Ours)DUSt3RPairwise Input

Figure A6: Qualitative comparison of feed-forward pairwise pointmaps prediction.
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MonST3R (Ours)DUSt3RInput Frames CasualSAM

Figure A7: Qualitative comparison of static/dynamic mask. We visualize both the continuous
error map (upper row) and binary static/dynamic mask (lower row). The threshold α is fixed.

A.5 STATIC/DYNAMIC MASK

We present the result of static/dynamic mask estimation based on the optical flow, as discussed
in Sec. 3.3. As shown in Fig. A7, our MonST3R achieves overall plausible results while DUSt3R
fails to provide accurate motion mask due to error in camera pose and depth estimation.

B MORE QUANTITATIVE RESULTS

B.1 ABLATION ON TRANING/INFERENCE WINDOW SIZE

In this section, we present additional quantitative results on the impact of different training and
inference window sizes, as shown in Tab. A1. The results demonstrate that performance generally
improves as the inference window size increases, up to the size of the training window.
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Table A1: Ablation study on different training/inference window sizes on the Sintel dataset.
Each cell displays two values: ATE ↓ / Abs Rel ↓, corresponding to camera pose and video depth
estimation, respectively. The cells where the inference window size exceeds the training window
size are highlighted in grey. The default setup is underlined, and the best results are in bold. GPU
memory consumption for each inference setup is listed in the leftmost column.

Training window size

Memory (GB) Inference video graph Size 5 Size 7 Size 9

17.3 Window size 3 0.191 / 0.442 0.182 / 0.413 0.163 / 0.383
20.1 Window size 4 0.178 / 0.431 0.166 / 0.406 0.148 / 0.362
17.2 Window size 5 (stride 2) 0.145 / 0.439 0.140 / 0.411 0.137 / 0.367
23.5 Window size 5 0.139 / 0.406 0.132 / 0.399 0.133 / 0.355
19.9 Window size 7 (stride 2) 0.180 / 0.409 0.140 / 0.372 0.121 / 0.359
29.5 Window size 7 0.174 / 0.389 0.136 / 0.351 0.113 / 0.346
23.2 Window size 9 (stride 2) 0.177 / 0.380 0.156 / 0.387 0.108 / 0.345

Moreover, our proposed stride-based sampling provides a better trade-off between window size and
computational cost. For instance, for the training window size of 7 or 9, the inference configuration
“Window size 7 (stride 2)” outperforms “Window size 4” while consuming a similar amount of
memory (19.9 GB vs. 20.1 GB). Additionally, for a training window size of 9, “Window size 9
(stride 2)” achieves better performance than “Window size 7” while reducing memory consumption
by 20%, highlighting the efficiency of our design.

B.2 ABLATION ON LOSS WEIGHT SENSITIVITY

Table A2: Ablation study on loss weight sensitivity. The table shows the effect of varying the
loss weights wsmooth and wflow on camera pose and video depth estimation. The default setup is
underlined, and the best results are in bold.

Camera pose estimation Video depth estimation

wsmooth wflow ATE ↓ RPEtrans ↓ RPErot ↓ Abs Rel ↓ δ <1.25 ↑

0.01 0.001 0.118 0.045 0.716 0.335 58.2
0.01 0.005 0.109 0.042 0.715 0.336 58.2
0.01 0.01 0.108 0.042 0.732 0.335 58.5
0.01 0.05 0.115 0.044 0.831 0.329 59.5
0.01 0.1 0.118 0.049 0.838 0.330 59.3

0.001 0.01 0.110 0.048 0.869 0.332 58.4
0.005 0.01 0.109 0.044 0.844 0.334 58.3
0.01 0.01 0.108 0.042 0.732 0.335 58.5
0.05 0.01 0.127 0.045 0.779 0.342 57.9
0.1 0.01 0.138 0.049 0.799 0.346 57.3

In the main paper, our global optimization objective (see Eq. (6)) is a combination of three different
loss terms, controlled by two hyperparameters. Here, we evaluate the sensitivity of the results to
variations in these two weights.

From the results in Tab. A2, it can be seen that the weight of the optical flow loss (wflow) does
not significantly impact the overall performance. Varying the flow loss weight sometimes leads to
slightly better results in other metrics. The weight of the camera trajectory smoothness constraint
(wsmooth) exhibits more noticeable effects. When it is set to a lower value, the difference in perfor-
mance remains small, though the RPE performance drops noticeably. However, when the weight is
set too high, performance degrades, likely due to the over-constraining of the camera trajectory.
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